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Boundary driven shear flows and wall thermostats are being used in computer simulations of materials with
increasing frequency. One attraction is that such boundary constraints offer a more realistic representation of
the physical constraints imposed experimentally than the widely employed homogeneous constraints. In this
paper we derive the linear response expressions for shear viscosity and thermal conductivity based on the
fluctuations associated with boundary constraints. We demonstrate that our approach provides an effective
method of describing the rheology in interfaces as well as bulk samples.
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I. INTRODUCTION

In recent years, an increasing interest in the behavior of
materials in confined geometriesse.g., the marked difference
between the transport properties in the bulk and in confine-
ment f1g and transport across interfaces in layered systems
f2–4gd has been a strong motivator in the development of
simulation methods for heterogeneous systems. While equi-
librium molecular dynamics simulations have been widely
used to address structural properties and spatially dependent
diffusion coefficients in confined systems, the spatial depen-
dence of thermal conductivityf4,5g and viscosityf6–8g are
invariably computed in nonequilibrium molecular dynamics
sNEMDd simulations. The reason for this is that equilibrium
methods for calculating transport coefficients rely on linear
response theory and, currently, there is no implementation of
this theory that will allow one to calculate the local value of
a transport coefficient in a heterogeneous system. In this pa-
per we present a treatment of linear response based on local-
ized fluctuations that directly addresses this problem.

In the conventional Green-Kubo linear response theory
f9g a transport coefficient is expressed in terms of a time
integral of the autocorrelation function of the associated flux.
There is no obstacle to applying this same method to a het-
erogeneous material at equilibrium such as the case when
two phases are in coexistence. The result is a transport coef-
ficient averaged over the entire system. The difficulty comes
if one is interested in the transport coefficient associated with
a specific part of such a heterogeneous sample, a layer con-
taining an interface, for example. The theory we present here
is a generalization of the Green-Kubo formalism describing
the transport between two arbitrarily located parallel planes
within a sample. The expressions we derive for shear viscos-
ity and thermal conductivity can be applied to a material of
arbitrary heterogeneity.

The knowledge of spatially dependent linear response is
the prerequisite for a complete statistical theory of friction or
thermal conductivity at a general interface. An interfacial
layer of a multiphase system can undergo a structural change
for much weaker driving fieldsse.g., shear stress or tempera-
ture gradientd than a uniform bulk system. Since the weakest
driving fields accessible to NEMD simulations are large
compared to the largest experimental gradients, the extrapo-
lation of “weak field” results can lead to incorrect conclu-

sions about the equilibrium, i.e., the experimental weak field,
limit. It is impossible to determine which part of the interfa-
cial friction or thermal conductivity can be determined from
the equilibrium structure and fluctuations, and which effects
observed in simulation are nonlinear consequences of driving
forces.

In this paper, we focus on the linear response theory for
boundary-driven systems of finite extension in one Cartesian
direction. Mechanical and thermal constraints establishing
shear or heat flow in a liquid or gas are physically imposed
upon a material at its surfaces. In the case of fluids, these
constraints are typically applied via the walls that serve to
contain the material. Boundary constraints on stress, strain,
and temperature, similar in principle to the experimental con-
straints, are now frequently employed in simulations of con-
fined systemsf3,4g. They avoid the artificialities and ambi-
guities of uniformly applied driving fields and homogeneous
temperature constraintsf10g in heterogeneous systems such
as coexisting phases or banded flows.

The approach we develop in this paper involves determin-
ing the response of materials to an applied boundary con-
straint through recording the response of the very boundaries
at which the constraint is imposed. An appealing feature of
this approach is that it closely resembles the experimental
situation. Consider, for example, the specific heat measure-
ments of Birge and Nagelf11g. In this 1985 experiment, a
supercooled liquid was heated using a hot wire. The resulting
temperature was monitored by measuring the change in re-
sistivity of the same wire used in heating.

Our expressions for shear viscosity and thermal conduc-
tivity of a material are completely in terms of the fluctuations
occurring in localized layers of the sample. This theory pro-
vides the basis for a general microscopic description of in-
terfacial friction and thermal transport. To see this, consider
the problem as sketched in Fig. 1. To determine the transport
coefficients for momentum and energy transport across an
interface we need to be able to study the linear response of
just that portion of the sample lying between the planes
marked 18 and 28. To apply constraints of some type at these
planes would run the risk of perturbing the very response we
would like to measure. In this paper we have solved this
problem by deriving expressions for the transport coeffi-
cients between these internal planes in which no form of
constraint is applied at the planes themselves. Instead, the
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state of the sample is determined by constraints applied to
boundaries 1 and 2 that can be well removed from the local
region of interest.

We consider anN-particle system. As shown in Fig. 1, we
separate it into two parallel planar boundary layers 1 and 2
consisting ofN1 and N2 atoms, respectively, and the rest
of the system referred to as “bulk” and consisting ofNb
=N−N1−N2 particlesssee Fig. 2d. The average separation of
the centers of mass of the boundary layers isL. Constraints
are applied only to the boundary layer atoms, which are as-
sumed to stay confined to the boundary regions of the sys-
tem’s volumeV. This assumption is not an essential require-
ment, but one made in order to simplify the treatment of the
boundary by removing the fluctuations in particle number.
The reader should note that the boundary we introduce does
not necessarily have to correspond to an actual interface be-
tween different phases. Later in this paper we shall provide
an example of boundaries designed to closely match the bulk
properties of a sample. The flexibility provided by these gen-
eralized boundaries allows one to study a physical interface
without perturbing its properties by imposing constraints.

II. THERMAL CONDUCTIVITY

To begin, we derive an expression for the thermal conduc-
tivity of a system. The temperature at each boundaryT0±DT,
respectively, is imposed using the Nosé equations of motion
f12g, i.e.,

ṙ i1,2
= pi1,2

/m1,2s1,2
2 ,

ṗi1,2
= Fi1,2

,

s1d
ṡ1,2= ps1,2/Q,

ṗs1,2
= o

i1,2

pi1,2

m1,2s1,2
3 −

3N1,2kBsT0 ± DTd
s1,2

,

and the bulk equations of motion are

ṙ ib
= pib

/mib
,

s2d
ṗib

= Fib
.

In Eqs.s1d and s2d, r i, pi, andmi are, respectively, the posi-
tion, momentum, and mass of the atomi. The indexi1 goes
over all N1 atoms of the first layer,i2 goes overN2, and ib
goes overNb. Fi is the total force on the atomi from its
interaction with the other particles of the system. In Eq.s1d,
s1,2 andps1,2

are the thermostat degrees of freedom, and the
variableQ can be interpreted as the “thermostat inertia.”

The equilibrium sDT=0d system conserves the Nosé
Hamiltonianf12g,

H0 = o
i=1

N
pi

2

2mi
+ F +

ps1

2 + ps2

2

2Q
+ 3kBT0sN1 ln s1 + N2 ln s2d

+ o
i1=1

Nw1 pi1

m1s1
2 + o

i2=1

Nw2 pi2

m2s2
2 , s3d

which can be interpreted as the internal energy of the system
fthe first two terms on the right-hand side of Eq.s3dg and
environmentsthe remaining termsd. The rate of change of
internal energy according to Eqs.s1d and s2d defines the
dissipative fluxJ created by maintaining a temperature gra-

dient 2DT/L between the boundary layersf13g, H0
Y8

=−s2DT/LdJV. Using the perturbed equations of motion Eq.
s1d and Eq.s2d, we obtain the rate of change of the equilib-
rium Hamiltonian,

Ḣ0 =
3kBDT

Q
SN1

ps1

s1
− N2

ps2

s2
D = − JV

2DT

L
, s4d

defining the dissipative flux conjugate to the temperature
gradient 2DT/L as

J =
3kB

2QS
SN2

ps2

s2
− N1

ps1

s1
D , s5d

FIG. 1. A schematic representation of a two-phase system and
the various layers referred to in the text. Black layers 1 and 2 are
the boundary layers at which constraints are applied while the inner
layers 18 and 28, that bracket the interfacial region, exert no
constraint.

FIG. 2. A y-z projection of a configuration of the simulated
Lennard-Jones liquid showing the boundary layer atoms tethered to
disordered “liquid” sitessfull black circlesd and bulk liquid atoms
sfull grey circlesd. The stationary external atomic layers used in
thermal conductivity simulations are plotted as black dots.
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whereS=V/L is the surface area of the system.
Using the substitution

ps1,2

s1,2
= Q

ṡ1,2

s1,2
= Qa1,2, s6d

the equations of motions1d reduce to a much simpler Nosé-
Hoover formf14g,

ṙ i1,2
= pi1,2

/m1,2,

ṗi1,2
= Fi1,2

− a1,2pi1,2
, s7d

ȧ1,2Y8 = f2K1,2− 3N1,2kBsT0 ± DTdg/Q,

whereK1 and K2 are total kinetic energies of the boundary
layer 1 and 2, respectively, anda1 and a2 deterministically
adjust the kinetic energy of the respective boundaries so that
the average kinetic energy of each corresponds to the desired
temperature. The variableQ determines the time scale of
fluctuations ina1 anda2. After substitution Eq.s6d, the flux
in Eq. s5d conjugate to temperature gradient is given by

J =
3kB

2S
sN2a2 − N1a1d. s8d

If the boundary layers on average consist of no more than
one molecular layer, the energy fluxJq through the system
described by Eqs.s7d ands2d is half the difference of fluxes
through each of the boundaries,

Jq = sa2K2 − a1K1d/S,

which is in equilibrium equal to

Jq = 3kBT0sa2N2 − a1N1d/2S= T0J. s9d

The dissipative flux is equal to the energy flux multiplied by
temperatureT0, just as it appears in the conventional bulk
Green-Kubo relationships for thermal conductivity.

The expression for thermal conductivity can now be ob-
tained by following the transient time-correlation formalism
sTTCFd f13g. In general, the linear transport coefficientx
associated with the variableA under external perturbation
Fext “switched on” at t=0 is obtained from the ratio
kAstdl /Fext by taking the limitFext→0 followed by the limit
t→`,

x = lim
Fext→0

lim
t→0

kAstdl
Fext

= −
V

kBT
E

0

`

dskAssdJs0dlEQ, s10d

providing thatkAs0dl vanishes, and that the perturbed equa-
tions of motion conserve the phase space volumesphase
space incompressibilityf13gd. Note thatJ refers to the flux
conjugate to the fieldFext. After taking the limits, the inte-
grand on the right-hand side becomes the equilibrium corre-
lation function, hence the subscript “EQ.”

The phase space incompressibility conditionf13g,

o
i=1

N
]

]r i
· ṙ i + o

i=1

N
]

]pi
· ṗi +

]ȧ1

]a1
+

]ȧ2

]a2
= 0,

is satisfied in the extended phase space of nonequilibrium
equations of motions7d and s2d spanned by Cartesian com-
ponents of positions and momenta of all particlessr i ,pi , i
=1, . . . ,Nd anda1 anda2 fone can verify this by substituting
ṙ i, ṗi, andȧ1,2 from Eqs.s7d and s2d and differentiatingg.

Thermal conductivityl sas appears in the Fourier heat
law Jq=−lDT/L f15gd is in our system the ratio of the en-
ergy flux Eq.s9d and the temperature gradient,

l = lim
DT→0

lim
t→`

Jq

2DT/L
= lim

DT→0
lim
t→`

T0J

2DT/L

=
9VkB

4
E

0

`

dtKDastd
S

Das0d
S

L , s11d

whereDa=N1a1−N2a2. In deriving Eq.s11d, we have cho-
sen the energy flux Eq.s9d as the phase variableA in Eq.
s10d, while the role of the external driving fieldFext is played
by the temperature gradient, andJ is the dissipative flux
conjugate toFext=2DT/L. Equations11d is the major result
of this paper. It is remarkable in that it describes a transport
property of the bulk sample through the fluctuations in the
boundaries alone.

An alternative expression for thermal conductivity fol-
lows from imposing a constant energy flux through the sys-
tem. If the particles in the boundary layers satisfy the equa-
tions of motion

ṙ i1,2
= pi1,2

/m1,2,

s12d
ṗi1,2

= Fi1,2
7 api1,2

/N1,2,

wherea is now held constant. IfT0 is the average tempera-
ture of the system, the heat fluxJq imposed by Eq.s12d is
3kBaT0/S. The rate of change of the equilibrium Hamil-
tonian

H0 = o
i=1

N
pi

2

2m
+ F

is 3kBsT2−T1d. If we take the external field to beFext

=Jq/T0=3kBa /S, the dissipative fluxJ associated with this
external field is the temperature gradientDT/L, whereDT
=T2−T1 is the temperature difference between two boundary
layers. The phase space incompressibility of the system de-
scribed by Eqs.s12d and s2d,

o
i=1

N
]

]r i
· ṙ i + o

i=1

N
]

]pi
· ṗi = 0 s13d

is easily verified. The inverse thermal conductivity in the
linear response limita→0 is obtained from Eq.s10d by sub-
stituting Jq/T0 for external field,DT/L as the dissipative
flux, and DT/T0L as the phase variableA. It is determined
from the fluctuations of the average temperature difference
between the two boundaries,
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1

l
= lim

a→0
lim
t→`

1

T0

DT/L

Jq/T0
= −

V

kBT0
2E

0

`

dtKDTstd
L

DTs0d
L

L .

s14d

The expression for 1/l in Eq. s14d can be generalized in
a useful fashion. Consider a planar interface for which we
would like to calculate the interfacial conductivity, let us call
it l8. The situation is sketched in Fig. 1. Since the heat flux
imposed at the boundaries is constant throughout the system,
one can obtain the inverse thermal conductivity 1/l8 of an
arbitrary film of width L8 within the system, between the
layers 18 and 28 shown in Fig. 1 as

1

l8
= −

V

kBT0
2E

0

`

dtKDT8std
L8

DTs0d
L

L , s15d

whereDT8 is the temperature difference between boundary
layers 18 and 28. Equations15d represents, to our knowledge,
the first general Green-Kubo-type expression for the thermal
conductivity across an arbitrary interface.

III. SHEAR VISCOSITY

We now consider the shear viscsityh in terms of bound-
ary fluctuations. Let thez direction lie parallel to the normal
to the boundaries. We apply the forceF in thex direction on
the center of mass of the first external boundary layer and the
force −F on the center of mass of the second layer. IfS is the
surface area of the layers,F /S is shear stress. The equations
of motion for the layer atoms are

r i1,2
Y8 = pi1,2

/mi1,2
,

s16d
pi1,2

Y8 = Fi1,2
± exmi1,2

F/M1,2,

The second term on the right-hand side of the momentum
equation in Eq.s16d is the external force driving the shear
flow, whereex is the unit vector in thex direction andM1,2 is
the total mass of the first or second layer. The bulk atoms
still obey Newton equationss2d. The phase space incom-
pressibility of the systems16d is verified from Eq.s13d.

The equilibrium of the system is characterized byF=0.
The rate of change of internal energy according to Eqs.s16d
and s2d defines the dissipative fluxJ created during shear

f13g, Ḣ0=−sF /SdJV. The flux conjugate to shear stress isJ
=DvxCM/L, where DvxCM is the difference between thex
components of the center-of-mass velocities of the boundary
layers, so that the dissipative flux conjugate to shear stress is
the average strain rate in the system. The ratio ofDvxCM/L
and F /S in the limit F→0, t→` expresses the inverse av-
erage viscosity 1/h of the system between two layers as the
integral of the equilibrium correlation function of strain
rates,

1

h
= −

V

kBT
E

0

`

dtKDvxCMstd
L

DvxCMs0d
L

L . s17d

As in Eq. s15d, we can generalize this expression to obtain

the viscosity acting between any two layers 18 and 28 within
our samplessee Fig. 1d separated by a distanceL8,

1

h8
= −

V

kBT
E

0

`

dtKDvxCM8 std
L8

DvxCMs0d
L

L , s18d

whereDvxCM8 is the difference inx components of the center-
of-mass velocities of the inner boundaries 18 and 28. This
expression can be used to define the viscosity in an interfa-
cial region or the friction coefficient across an interface.

An alternative expression can be obtained by constraining
the centers of mass of the boundary layers to move at a fixed
relative velocity DvxCM, so that the overall strain rate is
DvxCM/L. In the limit DvxCM/L→0 we obtain viscosity in
terms of correlations of surface forces,

h = −
V

kBT
E

0

`

dtKDFstd
2S

DFs0d
2S

L . s19d

IV. SIMULATIONS

In this section we shall test the validity of our expressions
for l andh by showing that the above theory can reproduce
well-known results for thermal conductivity and viscosity of
a uniform liquid. We compare the results from our theory,
applied to a liquid film, with those from the standard Green-
Kubo expressions for a uniform bulk liquid in periodic
boundary conditions. To this end we shall introduce liquid-
structured boundaries to avoid perturbing the homogeneous
liquid. Such boundaries, consisting of particles pinned to liq-
uidlike sites by anharmonic springs, have been used previ-
ouslyf16g. The springs are anharmonic in order to reduce the
coupling to the Nosé-Hoover thermostatf14g. We demon-
strate that, with this choice of boundary, the correlation inte-
grals converge to the known bulk transport properties in the
case of homogeneous liquid film. This result implies that, by
matching the structure of the boundary layer to the structure
of the bulk system adjacent to it we can study liquids without
the disturbance from the solid walls.

We studied a Lennard-Jones liquid at the densityr=0.84
and temperatureT=1.0 in reduced unitsf17g. The equations
of motions were integrated using fifth order Gear predictor-
corrector scheme with the time stepdt=0.001. Initially, a
bulk liquid system ofN=6912 atoms was equilibrated from
fcc lattice in periodic boundary conditions for 106 steps. To
generate the amorphous boundary layersssee Fig. 2d, the
atoms within layers of thicknessl =0.84 at the lower and the
upper boundary of the periodic cellfi.e., such that 0, rzsid
, l andL− l , rzsidLg were then tethered to their current sites
r eqsid by anharmonic potentials of the form

Fasr id = − k4fr i − r eqsidg4 − k6fr i − r eqsidg6

with k4=53103 and k6=53106. Production runs were of
53106 time steps.

We left three amorphous layers of “frozen” immobile at-
oms below and above the tethered liquidlike boundary layers
sFig. 2d, in order to prevent the escape of liquid atoms
through the holes in the boundary layer, and the average
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displacement of the tethered atoms away from the confined
liquid causing the change in the liquid film density. The im-
mobile atoms represent an additional static conservative ex-
ternal field term in the Nosé Hamiltonian that does not alter
the derivation of thermal conductivity. In the shear viscosity
simulation, the forces due to the immobile atoms were not
included in the definition of shear stress as the total force per
unit area acting on the boundary atoms in Eq.s19d. Their role
was to preserve the liquid structure close to the boundary
without making an explicit contribution to friction.

In Figs. 3 and 4 we present the thermal conductivity cal-
culated using Eqs.s11d and s4d, respectively. The values are
plotted against the size of the time interval used to integrate
the respective correlation functions. The thermal conductiv-
ity calculated using the conventional Green-Kubo expression
for a bulk liquid with periodic boundary conditions is pro-

vided for comparison. In Fig. 5 we present the analogous
results for the shear viscosity calculated using Eq.s19d. The
height of the large initial peaks in the boundary correlation
integrals in Figs. 3 and 5 depends on the pinning potential
and the choice ofQ in the Nosé-Hoover thermostat. It is
known f18g that tethering of wall atoms reduces the heat
transfer between wall and liquid. However, we have not seen
the influence of this effect on the equilibrium simulation re-
sults.

In all three cases, we find that our boundary correlation
results converge to the bulk values. These results both con-
firm our derivations and show that the pinned liquid walls do
not alter the transport properties of a liquid in the linear
limit.

While the standard Green-Kubo approach clearly repre-
sents a more efficient route for calculating transport coeffi-
cients in bulk liquids, we remind the reader that the boundary
fluctuation method developed here can also be applied to
problems such as interfacial transport in a localized region of
a layered film, where the expressions based upon conven-
tional Green-Kubo theory do not apply. Since even the
equivalent expressions for transport in specified bands of the
bulk are not known, our method is so far the only one which
makes it possible to calculate the transport coefficients across
a localized region containing an interface.

V. CONCLUSION

We have presented a linear response theory for transport
in finite systems in terms of boundary fluctuations. The ex-
pressions we obtain for thermal conductivity and viscosity of
the whole sample are remarkable in that they rely solely on
fluctuations at the walls and contain no explicit reference to
the material contained by the walls. It is this feature that
enables us to apply these expressions to localized regions of
a material of arbitrary heterogeneity.

By treating heat and shear flow in a completely analogous
manner, this theory provides a statistical mechanical basis for

FIG. 3. The running thermal conductivity integrall plotted
against the size of the time window over which the associated cor-
relation function is integrated. The results from Eq.s11d sdotted
lined are compared with the Green-Kubo bulk thermal conductivity
correlation integralsfull lined.

FIG. 4. The running inverse thermal conductivity integrall−1

plotted against the time window over which the associated correla-
tion function is integrated. The results from Eq.s14d sdotted lined
are compared with the inverse value of the thermal conductivity
obtained from the Green-Kubo bulk correlation integralsfull lined.

FIG. 5. The running shear viscosity integralh is plotted against
the size of the time window over which the associated correlation
function is integrated. The results from Eq.s19d sdotted lined are
compared with those obtained from the Green-Kubo bulk shear vis-
cosity correlation integralsfull lined.
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nonequilibrium simulations of layered and interfacial sys-
tems. In current wall-driven nonequilibrium simulations of
shear flowf3g, the averages of the driving boundary forces
are used to specify shear stress across the system. Our theory
makes it possible to formulate a nonequilibrium method for
calculating thermal conductivity that makes use of fluctua-
tions in boundary constraintsfEq. s9dg, currently calculated
and discarded in simulations involving wall thermostats, for
the definition of the uniform heat flux.

We verified the theory on a homogeneous liquid film
bounded by pinned liquid-structured boundaries. The equi-
librium transport coefficients across the film evaluated using

our theory match the bulk liquid values. The theory devel-
oped here represents a general treatment with which to study
linear transport across any type of interfacesliquid-liquid,
liquid-solid or solid-solidd without interference caused by
driving boundary layers in equilibrium and nonequilibrium
simulations.
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