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Linear response theory for thermal conductivity and viscosity in terms of boundary fluctuations
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Boundary driven shear flows and wall thermostats are being used in computer simulations of materials with
increasing frequency. One attraction is that such boundary constraints offer a more realistic representation of
the physical constraints imposed experimentally than the widely employed homogeneous constraints. In this
paper we derive the linear response expressions for shear viscosity and thermal conductivity based on the
fluctuations associated with boundary constraints. We demonstrate that our approach provides an effective
method of describing the rheology in interfaces as well as bulk samples.
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I. INTRODUCTION sions about the equilibrium, i.e., the experimental weak field,
In recent years, an increasing interest in the behavior ofMit: It is impossible to determine which part of the interfa-

materials in confined geometriés.g., the marked difference cial friction or thermal conductivity can be determined from
i the equilibrium structure and fluctuations, and which effects

between the transport properties in the bulk and in confine S . ; o
ment[1] and transport across interfaces in layered system bserved in simulation are nonlinear consequences of driving
rces.

[2—-4]) has been a strong motivator in the development of© . :
In this paper, we focus on the linear response theory for

simulation methods for heterogeneous systems. While equ'B darv-dri £ fin ok c .
librium molecular dynamics simulations have been widely oundary-driven systems of finite extension in one Cartesian
fection. Mechanical and thermal constraints establishing

used to address structural properties and spatially depende - ; o X .
diffusion coefficients in confined systems, the spatial depengLear or heat flow in a liquid or gas are physically imposed

L : . upon a material at its surfaces. In the case of fluids, these
Qencg of thermal cor}duct|V|t54,§] gnd viscosity{6-8] are  constraints are typically applied via the walls that serve to
invariably computed in nonequilibrium molecular dynamics

imulati h for this is th ibri contain the material. Boundary constraints on stress, strain,
(NEMD) simulations. The reason for this is that equilibrium 54 temperature, similar in principle to the experimental con-

methods for calculating transport coefficier_wts rely on ",”earstraints, are now frequently employed in simulations of con-
response theory and, currently, there is no implementation Gfned systems3,4]. They avoid the artificialities and ambi-
this theory that will allow one to calculate the local value of gyities of uniformly applied driving fields and homogeneous
a transport coefficient in a heterogeneous system. In this paemperature constrainfd0] in heterogeneous systems such
per we present a treatment of linear response based on locals coexisting phases or banded flows.
ized fluctuations that directly addresses this problem. The approach we develop in this paper involves determin-
In the conventional Green-Kubo linear response theoryng the response of materials to an applied boundary con-
[9] a transport coefficient is expressed in terms of a timestraint through recording the response of the very boundaries
integral of the autocorrelation function of the associated fluxat which the constraint is imposed. An appealing feature of
There is no obstacle to applying this same method to a hethis approach is that it closely resembles the experimental
erogeneous material at equilibrium such as the case whesituation. Consider, for example, the specific heat measure-
two phases are in coexistence. The result is a transport coafents of Birge and Nagélll]. In this 1985 experiment, a
ficient averaged over the entire system. The difficulty comesupercooled liquid was heated using a hot wire. The resulting
if one is interested in the transport coefficient associated witliemperature was monitored by measuring the change in re-
a specific part of such a heterogeneous sample, a layer cosistivity of the same wire used in heating.
taining an interface, for example. The theory we present here Our expressions for shear viscosity and thermal conduc-
is a generalization of the Green-Kubo formalism describingivity of a material are completely in terms of the fluctuations
the transport between two arbitrarily located parallel plane®ccurring in localized layers of the sample. This theory pro-
within a sample. The expressions we derive for shear viscossdes the basis for a general microscopic description of in-
ity and thermal conductivity can be applied to a material ofterfacial friction and thermal transport. To see this, consider
arbitrary heterogeneity. the problem as sketched in Fig. 1. To determine the transport
The knowledge of spatially dependent linear response isoefficients for momentum and energy transport across an
the prerequisite for a complete statistical theory of friction orinterface we need to be able to study the linear response of
thermal conductivity at a general interface. An interfacialjust that portion of the sample lying between the planes
layer of a multiphase system can undergo a structural changearked 1 and 2. To apply constraints of some type at these
for much weaker driving fieldée.g., shear stress or tempera- planes would run the risk of perturbing the very response we
ture gradientthan a uniform bulk system. Since the weakestwould like to measure. In this paper we have solved this
driving fields accessible to NEMD simulations are largeproblem by deriving expressions for the transport coeffi-
compared to the largest experimental gradients, the extrapaients between these internal planes in which no form of
lation of “weak field” results can lead to incorrect conclu- constraint is applied at the planes themselves. Instead, the
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*—— II. THERMAL CONDUCTIVITY
boundary layer 2

phase 2 ] ) )
‘/inner boundary 2' . .To begin, we derive an expression for the thermal conduc-
tivity of a system. The temperature at each boundggyAT,
interface respectively, is imposed using the Nosé equations of motion
[12], i.e.,
~ inner boundary 1'
hase 1 ri . =pi, /m ,
P ;boundary layer 1 11,2~ Piy 1512
5 =F. .
FIG. 1. A schematic representation of a two-phase system and p'1v2 1.2
the various layers referred to in the text. Black layers 1 and 2 are ) 1)
the boundary layers at which constraints are applied while the inner S1,2= Ps1,2Q,
layers T and 2, that bracket the interfacial region, exert no

traint.
constrain > Pij,  3NjKg(To+ AT)

3
state of the sample is determined by constraints applied to 12 M52 512
boundaries 1 and 2 that can be well removed from the locayng the bulk equations of motion are
region of interest.

We consider afN-particle system. As shown in Fig. 1, we Fo=pi/my
separate it into two parallel planar boundary layers 1 and 2 booe®
consisting ofN; and N, atoms, respectively, and the rest S —F
of the system referred to as “bulk” and consisting Nof Pip = Fiy-
=N-N,~N, particles(see Fig. 2 The average separation of | Egs.(1) and(2), r;, p;, andm, are, respectively, the posi-
the centers of mass of the boundary layerk.i€onstraints . : : .

tion, momentum, and mass of the atonThe indexi, goes

are applied only to the boundary layer atoms, which are as- ) . )

. . over all N; atoms of the first layeri, goes ovemN,, andiy,
sumed to stay confined to the boundary regions of the SYSi0es overN.. E. is the total force on the ator from its
tem’s volumeV. This assumption is not an essential require—g be

ment, but one made in order to simplify the treatment of themterachon with the other particles of the system. In E,

boundary by removing the fluctuations in particle number.slvz.and Ps, , are thg thermostat degre“es of freedgm, ?‘”ff the
The reader should note that the boundary we introduce doé/sa”ableQ can pe interpreted as the “thermostat inertia. .
not necessarily have to correspond to an actual interface be- The e_qumbnum (AT=0) system conserves the Nosé
tween different phases. Later in this paper we shall provid&iamiltonian[12],

an example of boundaries designed to closely match the bulk N 2 42

properties of a sample. The flexibility provided by these gen- Ho= S, Pi + P+ Ps, * Ps, + 3ksTo(N In's; + Ny In'sy)
eralized boundaries allows one to study a physical interface ~ ° < 2m, 2Q BIOVL LT

without perturbing its properties by imposing constraints.

Ps, ,=

)

NW1 - NW2 )
by Ly P @
T O, ilzl m]_s% i2:l ng

- which can be interpreted as the internal energy of the system
[the first two terms on the right-hand side of E&)] and
environment(the remaining terms The rate of change of
internal energy according to Egél) and (2) defines the

N  hulk” liquid dissipative fluxJ created by maintaining a temperature gra-

5 dient 2AT/L between the boundary layergl3], Hg'

; =—(2AT/L)JV. Using the perturbed equations of motion Eq.

boundary layer 1 (1) and Eq.(2), we obtain the rate of change of the equilib-

s rium Hamiltonian,

boundary layer 2
10

3kBAT( Ps, p32> 2AT
=T N2 - N2 | = -V, (@)
Q \'! ’s

St L
defining the dissipative flux conjugate to the temperature
tgradient AT/L as

Ho

FIG. 2. A y-z projection of a configuration of the simulated
Lennard-Jones liquid showing the boundary layer atoms tethered

disordered “liquid” siteqfull black circles and bulk liquid atoms D D
(full grey circleg. The stationary external atomic layers used in - 3_k5< 2_52 _ 1_51) (5)
thermal conductivity simulations are plotted as black dots. 2QS S, s/’
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whereS=V/L is the surface area of the system. N

aJ . a . dc
Using the substitution SZh+S L g+ X %22,
i=1 i i=1 9P day  day
pi'Z:Qi'Z:Qalz (6) is satisfied in the extended phase space of nonequilibrium
S12 S ! equations of motior{7) and (2) spanned by Cartesian com-

ponents of positions and momenta of all particlesp;,i
the equations of motiofil) reduce to a much simpler Nosé- -1 N) anda; and e, [one can verify this by substituting
Hoover form[14], fi, Pi» anday , from Egs.(7) and(2) and differentiating
. Thermal conductivityh (as appears in the Fourier heat
M, = pil,z/mli' law J,=-NAT/L [15]) is in our system the ratio of the en-
ergy flux Eqg.(9) and the temperature gradient,

pi. =F — a1 i ., (7) J T.J
v v A= lim lim == fim lim =2
AT—0t—x2AT/L  AT—0t—x2AT/L
ag oY =[2K; 5= 3N; Ka(To £ AT)]/Q, WVig [* [ Aalt) Aa(0)
- : = J dt : (12)
whereK; andK, are total kinetic energies of the boundary 4 J, S S

layer 1 and 2, respectively, ang, and «, deterministically o

adjust the kinetic energy of the respective boundaries so thifhereAa=N;a;~N,a,. In deriving Eq.(11), we have cho-
the average kinetic energy of each corresponds to the desiré§n the energy flux Eq9) as the phase variabl in Eq.

temperature. The variabl® determines the time scale of (10), while the role of the external driving fiel, is played
fluctuations ina; and a,. After substitution Eq(6), the flux by the temperature gradient, addis the dissipative flux

in Eq. (5) conjugate to temperature gradient is given by ~ conjugate taFe,=2AT/L. Equation(11) is the major result
of this paper. It is remarkable in that it describes a transport

kg property of the bulk sample through the fluctuations in the
J= E(Nzaz = Niay). (8)  boundaries alone.
An alternative expression for thermal conductivity fol-
If the boundary layers on average consist of no more thatows from imposing a constant energy flux through the sys-
one molecular layer, the energy fluy through the system tem. If the particles in the boundary layers satisfy the equa-
described by Eq97) and(2) is half the difference of fluxes tions of motion
through each of the boundaries, .
Fiy,= pilz/ml,Z:
Jq = (a2K2 - alKl)/S, (12)
which is in equilibrium equal to Piy, =Py, + aPiy Mz
where« is how held constant. [T is the average tempera-
Jq = 3kgTolazNz = a1Np)/2S=TyJ. (9)  ture of the system, the heat flul, imposed by Eq(12) is

o . o 3kgaTy/S. The rate of change of the equilibrium Hamil-
The dissipative flux is equal to the energy flux multiplied by ;nian

temperatureTy, just as it appears in the conventional bulk

Green-Kubo relationships for thermal conductivity. N p?
The expression for thermal conductivity can now be ob- Ho= 2> m +®
tained by following the transient time-correlation formalism i=1

(TTCF_) [13]. In general, the linear transport coefficiept g a(T,~Ty). If we take the external field to b&.y
associated with the variabla under external perturbation =3,/ To=3kga!S, the dissipative flux) associated with this

Feye “switched on” att=0 is obtained from the ratio external field is the tem ;
X e S perature gradiexit/L, where AT
(A())/ Fexq by taking the limitFe,— 0 followed by the limit =T,-T, is the temperature difference between two boundary

t—oe, layers. The phase space incompressibility of the system de-
" scribed by Eqs(12) and(2),
_ e (AD) -V
x= lim |ImF— i ds(A(9)J(0))eq, (10) N N
Fext—=0t—=0 Fext Bl Jo 2 K +E 7 .
T pi=0 (13
o S

providing that(A(0)) vanishes, and that the perturbed equa-

tions of motion conserve the phase space voluipigase is easily verified. The inverse thermal conductivity in the

space incompressibility13]). Note thatJ refers to the flux linear response limier— 0 is obtained from Eq(10) by sub-

conjugate to the fieldr,. After taking the limits, the inte- stituting J,/T, for external field, AT/L as the dissipative

grand on the right-hand side becomes the equilibrium correflux, andAT/TgL as the phase variable. It is determined

lation function, hence the subscript “EQ.” from the fluctuations of the average temperature difference
The phase space incompressibility conditjds], between the two boundaries,
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1 1ATL V. (* [ AT(t) AT(0) the viscosity acting between any two layersahd 2 within
-= Clylino tlmT_oﬁ == KTS . d L our sample(see Fig. 1 separated by a distanté,
1 v (7 Avgep(t) A 0
(14) === dt< ”XC,M() vxoul )>, (18)
7 keTJ, L L

The expression for I in Eq. (14) can be generalized in
a UsefL—II fashion. ConSide-r a plar_lar interfaC-e-for which WQNhereAU)'(CM is the difference irx Components of the center-
would like to calculate the interfacial conductivity, let us call of-mass velocities of the inner boundaries dnd 2. This
it \’. The situation is sketched in Flg 1. Since the heat ﬂu)%xpression can be used to define the Viscosity in an interfa-
imposed at the boundaries is constant throughout the systemial region or the friction coefficient across an interface.

one can obtain the inverse thermal conductivith16f an An alternative expression can be obtained by constraining
arbitrary film of width L" within the system, between the the centers of mass of the boundary layers to move at a fixed
layers ¥ and 2 shown in Fig. 1 as relative velocity Av,cy, SO that the overall strain rate is
- , Av,em/L. In the limit Av,cy/L— 0 we obtain viscosity in
1 - _ v d AT_(UAT_(O) (15) terms of correlations of surface forces,
N ksTaJo L L /) .
- ij o1 AF© AF©) 19

where AT’ is the temperature difference between boundary = keTJo 2S 28 /°

layers 1 and 2. Equation(15) represents, to our knowledge,
the first general Green-Kubo-type expression for the thermal

conductivity across an arbitrary interface.
IV. SIMULATIONS

. SHEAR VISCOSITY In this section we shall test the validity of our expressions
) o for N and » by showing that the above theory can reproduce
We now 'conS|der the ;hea_r viscsigyin terms of bound-  \yell-known results for thermal conductivity and viscosity of
ary fluctuations. Let the direction lie parallel to the normal 5 niform liquid. We compare the results from our theory,
to the boundaries. We apply the foréen thex direction on  appied to a liquid film, with those from the standard Green-
the center of mass of the first external boundary layer and thgpq expressions for a uniform bulk liquid in periodic
force - on the center of mass of the second layeSi the  poundary conditions. To this end we shall introduce liquid-
surface area of the layer/Sis shear stress. The equations siyyctured boundaries to avoid perturbing the homogeneous

of motion for the layer atoms are liquid. Such boundaries, consisting of particles pinned to lig-
, uidlike sites by anharmonic springs, have been used previ-
iy Y =Piy JM ously[16]. The springs are anharmonic in order to reduce the
(16)  coupling to the Nosé-Hoover thermos{dt4]. We demon-
pil’ZY’ = Fil,zi exmil’zF/M 1,2 strate that, with this choice of boundary, the correlation inte-

grals converge to the known bulk transport properties in the

The second term on the right-hand side of the momentungase of homogeneous liquid film. This result implies that, by
equation in Eq(16) is the external force driving the shear matching the structure of the boundary layer to the structure
flow, wheree, is the unit vector in thex direction andM; ,is  of the bulk system adjacent to it we can study liquids without
the total mass of the first or second layer. The bulk atomshe disturbance from the solid walls.
still obey Newton equation$2). The phase space incom-  We studied a Lennard-Jones liquid at the dengity.84
pressibility of the systenil6) is verified from Eq.(13). and temperatur&=1.0 in reduced unitgl7]. The equations

The equilibrium of the system is characterized By0.  of motions were integrated using fifth order Gear predictor-
The rate of change of internal energy according to Ef8).  corrector scheme with the time steft=0.001. Initially, a
and (2) defines the dissipative flud created during shear pulk liquid system ofN=6912 atoms was equilibrated from
[13], Ho=—(F/S)JV. The flux conjugate to shear stresslis fcc lattice in periodic boundary conditions for 16teps. To
=Av,cm/L, Where Av,cy is the difference between the  generate the amorphous boundary layesse Fig. 2 the
components of the center-of-mass velocities of the boundargtoms within layers of thickneds-0.84 at the lower and the
layers, so that the dissipative flux conjugate to shear stress #per boundary of the periodic céile., such that €r(i)
the average strain rate in the system. The ratidofy/L <l andL—-1<r(i)L] were then tethered to their current sites
andF/Sin the limit F— 0, t— expresses the inverse av- I'¢{i) by anharmonic potentials of the form
erage viscosity 14 of the system between two layers as the

integral of the equilibrium correlation function of strain Do(ri) = = Kalri = req(i)]* = Kelri = regi)]°
rates, with k,=5x 10° and ks=5x 10°. Production runs were of
. 5x 10° time steps.
1__ V[ g Boxen® Avyem(0) (17 We left three amorphous layers of “frozen” immobile at-
7 keTJo L L ' oms below and above the tethered liquidlike boundary layers

(Fig. 2), in order to prevent the escape of liquid atoms
As in Eq. (15), we can generalize this expression to obtainthrough the holes in the boundary layer, and the average
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25 . . 10 —_— . .
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N —bulk
Pl Eq.(6) N R Eq.(13)
T3 S ] 6| —bulk
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! y 41
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FIG. 5. The running shear viscosity integnsals plotted against

FIG. 3. The running thermal conductivity integral plotted . . X . - .

. . - . . - the size of the time window over which the associated correlation
against the size of the time window over which the associated Corfunction is integrated. The results from E@Q9) (dotted ling are
relation function is integrated. The results from Edl) (dotted 9 ’

line) are compared with the Green-Kubo bulk thermal conductivitycompared Wlth. thqse obtalneq from the Green-Kubo bulk shear vis-
S . cosity correlation integraffull line).
correlation integralfull line).

displacement of the tethered atoms away from the confinedided for comparison. In Fig. 5 we present the analogous
liquid causing the change in the liquid film density. The im-results for the shear viscosity calculated using &§). The
mobile atoms represent an additional static conservative exieight of the large initial peaks in the boundary correlation
ternal field term in the Nosé Hamiltonian that does not alteintegrals in Figs. 3 and 5 depends on the pinning potential
the derivation of thermal conductivity. In the shear viscosityand the choice ofQ in the Nosé-Hoover thermostat. It is
simulation, the forces due to the immobile atoms were noknown [18] that tethering of wall atoms reduces the heat
included in the definition of shear stress as the total force peifansfer between wall and liquid. However, we have not seen
unit area acting on the boundary atoms in B8). Their role  the influence of this effect on the equilibrium simulation re-

was to preserve the liquid structure close to the boundargults. . _
without making an explicit contribution to friction. In all three cases, we find that our boundary correlation

In Figs. 3 and 4 we present the thermal conductivity cal-results converge to the bulk values. These results both con-
culated using Eqi]_l) and (4)’ respective|y_ The values are firm our derivations and show that the pinned |IQU|d walls do
plotted against the size of the time interval used to integrat@ot alter the transport properties of a liquid in the linear
the respective correlation functions. The thermal conductivlimit.
ity calculated using the conventional Green-Kubo expression While the standard Green-Kubo approach clearly repre-

for a bulk liquid with periodic boundary conditions is pro- sents a more efficient route for calculating transport coeffi-
cients in bulk liquids, we remind the reader that the boundary

0.16 T T T fluctuation method developed here can also be applied to
014 b VAo ] problems such as interfacial transport in a localized region of
s a layered film, where the expressions based upon conven-
012 [ f/ b tional Green-Kubo theory do not apply. Since even the
o equivalent expressions for transport in specified bands of the
01t yd ] bulk are not known, our method is so far the only one which
2008f ] makes it possible to calculate the transport coefficients across
v a localized region containing an interface.
0.06 [ ]
0.04 _' ] V. CONCLUSION
0.02 1 We have presented a linear response theory for transport
1 in finite systems in terms of boundary fluctuations. The ex-
0 L L N pressions we obtain for thermal conductivity and viscosity of
0 5 10 15 20 the whole sample are remarkable in that they rely solely on

t fluctuations at the walls and contain no explicit reference to
FIG. 4. The running inverse thermal conductivity integrat ~ the material contained by the walls. It is this feature that
plotted against the time window over which the associated correla€nables us to apply these expressions to localized regions of
tion function is integrated. The results from H44) (dotted ling @ material of arbitrary heterogeneity.
are compared with the inverse value of the thermal conductivity By treating heat and shear flow in a completely analogous
obtained from the Green-Kubo bulk correlation intedfall line). manner, this theory provides a statistical mechanical basis for
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nonequilibrium simulations of layered and interfacial sys-our theory match the bulk liquid values. The theory devel-
tems. In current wall-driven nonequilibrium simulations of oped here represents a general treatment with which to study
shear flow[3], the averages of the driving boundary forceslinear transport across any type of interfadiguid-liquid,
are used to specify shear stress across the system. Our thediguid-solid or solid-solid without interference caused by
makes it possible to formulate a nonequilibrium method fordriving boundary layers in equilibrium and nonequilibrium
calculating thermal conductivity that makes use of fluctua-simulations.
tions in boundary constrainf&qg. (9)], currently calculated
and dis_cgrded in simulgtions involving wall thermostats, for ACKNOWLEDGMENTS
the definition of the uniform heat flux.
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